Impacto do retorno vazio sobre os fretes rodoviários

Por Neuto Gonçalves dos Reis*

Os métodos de cálculo de fretes usualmente utilizados pela NTC&Logística partem da hipótese de que o veículo de transferência trafega sempre carregado, tanto na viagem de ida quanto na viagem de volta.

Na prática, nem sempre se consegue carga de retorno, especialmente quando a transportadora atende a regiões predominantemente importadoras (nordeste e centro-oeste, por exemplo). O desequilíbrio de fluxo entre as regiões atendidas gera ociosidade do veículo no retorno e, portanto, acréscimos nos custos, que precisam ser incorporados ao método de cálculo.

Modelo para transporte sem retorno vazio

O modelo usual para cálculo de frete, admitindo-se veículo carregado tanto na ida quanto na volta, baseia-se nas seguintes fórmulas (ver *Manual de Cálculo de Custos e Formação de Preços do Transporte Rodoviário de Cargas*):

$$F = (A + Bp + DI)(1 + \frac{L}{100})$$

F = Frete-peso (R\$/tonelada)

p = Distância da viagem (percurso), em km

A = Custo do tempo de espera durante a carga e descarga (veiculo parado) em R\$/t

B = Custo de transferência (veículo em movimento) em R\$/t.km

DI = Despesas indiretas (R\$/tonelada)

L = Lucro operacional (%)

O fator *A* (custo do veículo parado para carga e descarga) calcula-se pela fórmula:

$$A = \frac{CF.T_{cd}}{H.CAP}$$

A= custo do tempo de espera durante a carga e descarga (R\$/tonelada

CF = Custo fixo (R\$/mês)

 T_{cd} = Tempo de carga e descarga (horas)

H = Número de horas trabalhadas por mês

CAP = Capacidade utilizada do veículo (toneladas)

O valor de *H* situa-se na faixa de 200 a 240 horas por mês, para um turno de trabalho e pode ser ampliado por meio de horas extras ou multiplicado por até 3, quando se utilizam pontes rodoviárias (hot seats).

O fator *B* (custo do veículo em movimento por t.km) calcula-se pela fórmula:

$$B = \frac{CF}{H.V.CAP} + \frac{C_{v}}{CAP}$$

V = Velocidade comercial do veículo (já computadas paradas para refeiçõões, abastecimento e outras necessidades

 C_v = Custo variável do veículo por quilômetro

O fator DI (R\$/tonelada), por sua vez, calcula-se pela fórmula:

DI = (DI/T.EXP). C

DI = Despesas indiretas (R\$/tonelada)

T.EXP = Tonelagem expedida por mês (t/mês)

C = Coeficiente de uso de terminais

Modelo para transporte com retorno vazio

Seja:

r = índice das viagens de retorno carregadas (já dividido por 100, ou seja, se houver 45%

de retornos vazios, r será 0,45)

De cada 2 viagens, apenas (1 + r) são pagas pelos clientes. Intuitivamente, conclui-se que o fator de agravação do custo será:

$$f = 2/(1 + r)$$

. O custo de transferência (CTvg) por viagem carregada é dedo por

$$CTvg = \frac{CF}{n} + C_v p$$

n = numero de viagens por mês

O Custo de transferência por tonelada (CT) será:

$$CT = \left[\frac{CF}{n} + C_{v}p\right] \frac{1}{CAP}$$

O tempo de duração de uma viagem é a soma dos tempos de veículo parado e em movimento;

$$TV = T_{cd} + \frac{p}{V}$$

Logo:

$$n = \frac{H}{T_{cd} + \frac{p}{V}}$$

Se existem viagens com retorno vazio, o T_{cd} para as viagens com veículo carregado não se altera, sendo nulo para as viagens vazias. Na média, este tempo será menor, aumentando o número possível de viagens:

Tempo mensal de carga e descarga na ida = $0.5nT_{cd}$

Tempo mensal de carga e descarga na volta = 0,5nrT_{cd}

Somando-se os dois tempos e dividindo-se pelo número de viagens:

Tempo médio de carga e descarga = $0.5T_{cd}(1 + r)$

Se r = 0 (todas as viagens de retorno vazias), vem: TMCD = $0.5T_{cd}$

Se r =1, (todas as viagens de retorno carregadas), vem: $TMCD = T_{cd}$

Portanto, o número médio de viagens quando existem retornos vazios será:

$$n = \frac{H}{0.5T_{cd}(1+r) + \frac{p}{V}}$$

Lembrar-se que:

$$CT = \left[\frac{CF}{n} + C_{v}p\right] \frac{1}{CAP}$$

Como o fator *n* entra no denominador da fórmula, o custo de transferência médio par o total de viagens será:

$$CT = \frac{2}{1+r} \left\{ \frac{CF.[0,5T_{cd}(1+r) + \frac{p}{V}]}{H} + C_{v}.p \right\} \frac{1}{CAP}$$

$$CT = \frac{2}{1+r} \frac{0.5T_{cd}(1+r).CF}{H.CAP} + \frac{2}{1+r} (\frac{CF}{H.V.CAP} + \frac{Cv}{CAP})p$$

$$CT = \frac{T_{cd}CF}{H.CAP} + \frac{2}{1+r} \left(\frac{CF}{H.V.CAP} + \frac{Cv}{CAP} \right) p$$

Lembrando-se que:

$$A = \frac{T_{cd}CF}{H.CAP}$$

е

$$B = \frac{CF}{H.V.CAP} + \frac{Cv}{CAP}$$

Tem-se:

$$CT = A + \frac{2}{1+r}Bp$$

Para se obter o frete peso, basta adicionar a despesa indireta e o lucro:

$$FP = (A + \frac{2}{1+r}Bp + DI)(1 + \frac{L}{100})$$

Conclui-se que o fator de agravamento 2/(1+r) afeta somente o custo do deslocamento do veículo. Este fator reflete o aumento necessário do frete médio entre as duas viagens, mas o frete praticado depende da política comercial da empresa. Sabe-se que, devido à lei de oferta e procura, o frete do sentido de menor fluxo (retorno) é sempre mais baixo do que o frete no sentido de maior fluxo. No entanto, a utilização deste fator já dá uma idéia do valor que deve ser obtido com a soma das receitas nos dois sentidos.

Este fator não altera o coeficiente A, uma vez que, nas viagens pagas e carregadas, o tempo de carga e descarga permanece o mesmo.

Exemplo hipotético

Sejam:

r = 40% = 0.40 = taxa de viagens de retorno com o veículo carregado

H = 240 horas = tempo mensal de utilização do veículo

DAT = R\$ 10,00 = despesas indiretas para carga lotação

T_{cd} = 5 horas = Tempo de carga e descarga

V = 60 km/h = velocidade comercial do veículo na estrada, já computados os tempos de parada para refeições, descanso etc.

L = 10% = taxa de lucro

CF = 13,000,00 = Custo fixo mensal do veículo pesado

Cv =1,20 = custo variável/km do veículo pesado

CAP = 25 toneladas = carga útil média por viagem

Calcular o frete médio para as distâncias de 50/800/2.400/6.000 km

$$A = \frac{CF.T_{cd}}{H.CAP} = \frac{13000.5}{240.25} = 10,8333 \text{ por tonelada}$$

$$B = \frac{CF}{H.V.CAP} + \frac{Cv}{CAP} = \frac{13000}{240.25.60} + \frac{1,20}{25} = 0,03611 + 0,04800 = 0,08411 \text{ por t.km}$$

Se não houvesse ociosidade, o frete seria obtido adicionando-se a despesa indireta e acrescentando a taxa de lucro:

$$FP = 1,10 (10,00 + 10,8333 + 0,08411p)$$

FP = 22,9167 + 0,09252p

Devido à ociosidade, o termo *B* deve sofrer agravamento:

$$[2/(1 + r/100)] = (2/1,40) = 1,4286$$
 (fator de agravamento)

$$1,4286xB = 1,4286x0,08411 = 0,12016$$

Incluindo-se a despesa indireta e o lucro:

$$FP = 1,10x(10,00 + 10,8333 + 0,12016p)$$

FP = 22,9167 + 0,13218p

Haveria os acréscimos nos frete peso da tabela 1.

Tabela 1 – Acréscimos no frete peso							
Percurso (km)	100% de retorno (R\$/t) FP = 22,1967+0,09252p		Aumento (%)				
50	27,54	29,53	7,20				
1000	115,44	155,09	34,35				
2000	207,96	287,27	38,13				

3000	300,48	419,44	39,59
4000	393,01	551,62	40,36
5000	485,53	683,79	40,83
6000	578,05	815,96	41,16

Observa-se que o acréscimo de custo devido à ociosidade aumenta com o percurso, pois ela afeta exclusivamente o custo do veículo em movimento.

Para calcular o acréscimo do número total de viagens e da quilometragem total, lembrar que:

TCD (100%) = 5 horas

TCD
$$(40\%) = 0.5.\text{Tcd}(1+r) = 0.5x5x(1+0.40) = 3.5 \text{ horas}$$

Portanto:

$$n(100\%) = \frac{240}{5 + \frac{p}{60}}$$

$$n(40\%) = \frac{240}{3.5 + \frac{p}{60}}$$

Os resultados estão na tabela 2.

Tabela 2 – Aumento no número de viagens									
Percurso	•				Aumento				
(km)	(100%)	rodando (h)	(40%)	rodando (h)	(%)				
50	41,14	34,29	55,38	46,15	34,62				
1000	11,08	184,62	11,90	198,35	7,44				
2000	6,26	208,70	6,52	217,19	4,07				
3000	4,36	218,18	4,49	224,30	2,80				
4000	3,35	223,26	3,42	228,03	2,14				
5000	2,72	226,42	2,76	230,33	1,73				
6000	2,29	228,57	2,32	231,88	1,45				

O acréscimo do número de viagens é maior para as curtas distâncias, uma vez que, nesta situação, a economia do tempo consumido mensalmente na carga e descarga é também maior. P tempo rodando assim como a quilometragem total percorrida mensalmente aumentam na mesma proporção do número de viagens, contribuindo para diluir o custo por quilômetro do percurso total.

Confirmação pelo método do número de viagens

Os resultados acima podem ser confirmados calculando-se o frete a partir das fórmulas:

$$CT(100\%) = \left[\frac{13.000}{n(100\%)} + 1,20p\right] \frac{1}{25}$$

$$CT(40\%) = \frac{2}{1,40} \left[\frac{13.000}{n(40\%)} + 1,20p \right] \frac{1}{25}$$

onde

$$n(100\%) = \frac{240}{5 + \frac{p}{60}}$$

$$n(40\%) = \frac{240}{3,5 + \frac{p}{60}}$$

Para 100% de retorno carregado, obtêm-se os resultados da tabela 3.

Tabela 3 – Frete peso com retorno carregado									
Percurso (km)	Viagens (n)	CF/t	CV/t	DI/t	t Custo/t	Frete/t			
50	41,14	12,64	2,40	10,00	25,04	27,54			
1000	11,08	46,94	48,00	10,00	104,94	115,44			
2000	6,26	83,06	96,00	10,00	189,06	207,96			
3000	4,36	119,17	144,00	10,00	273,17	300,48			
4000	3,35	155,28	192,00	10,00	357,28	393,01			
5000	2,72	191,39	240,00	10,00	441,39	485,53			
6000	2,29	227,50	288,00	10,00	525,50	578,05			

Para 40% de retorno carregado, obtêm-se os resultados da tabela 4.

Tabela 4 – Frete peso com 40% de retorno carregado								
Percurso (km)	Viagens (n)		CV/t	Soma	Ctransf/t	DI/t	Custo/t	Frete/t
50	55,38	9,39	2,40	11,79	16,84	4 10,00	26,84	29,53
1000	11,90	43,69	48,00	91,69	130,99	9 10,00	140,99	155,09
2000	6,52	79,81	96,00	175,81	251,1	5 10,00	261,15	287,27
3000	4,49	115,92	144,00	259,92	371,3°	1 10,00	381,31	419,44
4000	3,42	152,03	192,00	344,03	491,47	7 10,00	501,47	551,62
5000	2,76	188,14	240,00	428,14	611,63	3 10,00	621,63	683,79
6000	2.32	224.25	288.00	512.25	731.79	9 10.00	741.79	815.96

Nota-se que, antes do agravamento, a diferença entre os custos fixos (R\$ 3,25/t) corresponde exatamente à diferença entre os fatores A para as duas situações.

A(100%) =
$$\frac{CF.T_{cd}}{H.CAP} = \frac{13000.5}{240.25} = 10,8333$$
 por tonelada

A(40%) =
$$\frac{CF.T_{cd}}{H.CAP} = \frac{13000.3,5}{240.25} = 7,5833$$
 por tonelada

$$A(100\%) - A(40\%) = 10,8333 - 7,5833 = 3,2500$$

Para 50 km, por exemplo:

$$CF (100\%) - CF(40\%) = 12,64 - 9,39 = 3,25$$

Este diferença se repete nas demais distâncias.

É sobre este custo de transferência, ligeiramente rebaixado pela redução do tempo parado, que deve ser aplicado o fator de agravamento, e não sobre o custo com todos os retornos carregados.

Generalização

O modelo pode ser generalizado para a situação em que existam r_1 retornos carregados na idade e r_2 retornos carregados na volta.

Neste caso, o fator de agravamento será:

$$r = \frac{2}{(1+r_1).(1+r_2)}$$

Conclusões

- Como o custo deve ser coberto pelas viagens pagas, quando, no retorno, existe apenas uma proporção de r viagens pagas, o custo do percurso é agravado pelo fator 2/(1+r).
- Este agravamento n\u00e3o alcan\u00e7a o custo do ve\u00edculo parado nem as despesas indiretas.
- Esta redução do número de carregamentos diminui o tempo médio de carga e descarga, aumentando o número total de viagens e a quilometragem percorrida. Quanto mais curta a distância, maior será este aumento.
- Opcionalmente, o cálculo pode ser feito aplicando-se coeficiente de agravamento sobre o custo de transferência obtido levando-se em conta a redução do tempo de carga e descarga resultante dos retornos vazio.
- O modelo pode ser generalizado para a situação em que existam viagens ociosas tanto na ida quanto na volta.
- Nem sempre é fácil reduzir o retorno vazio, principalmente no transporte entre regiões onde existe desequilíbrio de fluxo (São Paulo e Nordeste, por exemplo). No caso de carga

fracionada, a urgência pode impedir a espera por carga de retorno e mesma a lotação do veículo. A adoção por parte dos transportadores de soluções como pool de cargas, alianças operacionais; e de transporte colaborativo ou de circuitos fechados por parte dos embarcadores pode amenizar o problema.

^{*} Neuto Gonçalves dos Reis é mestre em Engenharia de Transportes pela EESC-USP e assessor técnico da NTC&Logística.